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ABSTRACT

Background 

Breast cancer is one of the most prevalent cancers worldwide and pathologists are closely involved in

establishing a diagnosis. Tools to assist in making a diagnosis are required to manage the increasing

workload. In this context, artificial intelligence (AI) and deep-learning based tools may be used in

daily pathology practice. However, it is challenging to develop fast and reliable algorithms that can be

trusted by practitioners, whatever the medical center.

Methods 

We describe a patch-based algorithm that incorporates a convolutional neural network to detect and

locate  invasive  carcinoma  on  breast  whole-slide  images.  The  network  was  trained  on  a  dataset

extracted from a reference acquisition center. We then performed a calibration step based on transfer

learning to maintain the performance when translating on a new target acquisition center by using a

limited amount of additional training data. Performance was evaluated using classical binary measures

(accuracy, recall, precision) for both centers (referred to as “test reference dataset” and “test target

dataset”) and at two levels: patch and slide level.

Findings 

At patch level, accuracy, recall, and precision of the model on the reference and target test sets were

92.1% and 96.3%, 95% and 87.8%, and 73.9% and 70.6%, respectively. At slide level, accuracy,

recall, and precision were 97.6% and 92.0%, 90.9% and 100%, and 100% and 70.8% for test sets 1

and 2, respectively.

Interpretation 

The high performance of the algorithm at both centers shows that the calibration process is efficient.

This is performed using limited training data from the new target acquisition center and requires that

the model is trained beforehand on a large database from a reference center. This methodology allows

the implementation of AI diagnostic tools to help in routine pathology practice. 
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INTRODUCTION

Cancer detection is a major public health issue, with almost 10 million cancer deaths worldwide in

2020, 19.3 million new cases diagnosed, and an expected rise to 28.4 million cases from 2020 to 2040

(+47%).1 Breast  cancer  (BC)  has  now surpassed  lung  cancer  as  the  most  commonly  diagnosed

malignancy (2.3 million new cases diagnosed worldwide, 11.7% of all cancer diagnoses) and is the

leading or second cause of premature death in women in many countries according to the World

Health Organization. Accurate and prompt detection of BC is essential to improve treatment efficacy

and survival.

Current diagnosis of BC relies on close visual examination of surgical or biopsy material at cellular

level by highly qualified pathologists. The average annual workload of pathologists has increased by

around  5–10%2  and  current  data  indicate  a  shortage  of  histopathologists  worldwide3 leading  to

overwork, fatigue, and a higher risk of mistakes and diagnostic errors.2 Furthermore, the recent Covid-

19 pandemic has led to a significant delay and backlog in cancer diagnosis with the number of new

cases diagnosed falling by 23.3% in 2020 according to the National Cancer Institute.4

An increasing number of histopathology departments are going digital to overcome this problem. 5

Recent advances in slide scanners and information technology infrastructure enable the use of high-

resolution digitized images called whole slide images (WSI) in pathologists  daily routine. Digital

pathology provides telemedicine, slide sharing for collaboration or second opinions, easier generation

of reports, and long-term slide preservation. Above all, digital pathology allows the development of

computational pathology (i.e., the analysis of WSI by algorithms in order to help pathologists in their

diagnosis). This new field resulting from computer vision has recently come to the attention of the

pathology community by promising time saving, better reproducibility, and better accuracy.6 The use

of  advanced  machine  learning  and  deep-learning  has  been  demonstrated  on  breast,7,8 prostate,9,10

skin,11 lung,12 and colorectal13 cancer detection in numerous studies.

Several studies14-17 have shown that machine learning based classifiers are built and used directly on

sub-images extracted from WSI to predict whether they contain cancer or not. However, in a clinical

routine context, a pipeline locating cancer on raw WSI is needed. 

Few studies take into account computing times. In the study carried out by Pantanowitz et al.18 a

complete pipeline was proposed on prostate tissues, but computation times were approximately 20

min per slide and were therefore not compatible with daily clinical practice. In this study, we propose

a fast end-to-end pipeline from raw WSI to cancer location meeting the needs of routine pathology

practice.

Another requirement when designing a tool for clinical practice is the ability to maintain performance

when transferring to a new medical center. Slide preparation and acquisition scanners might differ,

leading to various image aspects. An algorithm that has learnt on data from a given acquisition center

can be very efficient on that specific acquisition center,  while performance may deteriorate when

moving to a new center.   In a previous study,19 the authors used a deep-learning model for style
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normalization  before  their  classification  model  in  order  to  make  their  system center  agnostic.  In

another study,20 the authors compared color normalization techniques and color augmentation. They

showed  that  both  techniques  improved  generalization  to  unseen  stain  variations  and  that  color

augmentation led to better accuracy. However, a drop in performance with both techniques for the

classification task on unseen center data was observed, which is not satisfactory for clinical use.

One of the most challenging aspects of computational pathology is the heavy size and weight of WSI

(usually more than 10 000 x 10 000 pixels, and over 500 Mo, respectively). Traditional deep learning

techniques using WSI as raw data are inapplicable, and when it comes to analyzing WSI, both storage

and  computation  time  are  heavy  challenges.  The  acceptance  of  diagnostic  tools  by  pathologists

requires the latter to be fit for usage and effective (i.e., fast and precise) in their daily routine practice. 

With these challenges in mind, we aimed to design a fast and simple processing pipeline that can be

generalized to any center using a limited amount of training data, sticking to light model architecture

for performance purposes. 

Here we present a patch-based approach that detects and locates invasive carcinoma (IC) on WSI. The

algorithm consists  of  a two-step pipeline.  First,  a  filtering algorithm parses WSI regions that  are

relevant  to  IC detection,  focusing the analysis  on a  small  part  of  the  slide  and leading to  faster

processing. Filtered regions are partitioned into patches and fed into a convolutional neural network

(CNN) based classifier that predicts whether those patches contain IC or not. This model was first

trained with labeled data from a so-called “reference center”, and performance was measured on a test

dataset  containing WSI from this same reference center.  Scanners  and staining methods for each

center are summarized in Table 1.  When testing this so-called “master model” (or “master classifier”)

on data from another center, termed “target center”, performance appeared to be greatly decreased. To

maintain  a  good performance  level,  we  used  the master  classifier  as  a  starting state  for  transfer

learning with training data  extracted from the target  center.  The obtained “calibrated model”  (or

“calibrated classifier”) performed well on data from the target center.

Below,  we  first  explain  the  WSI  processing  pipe  by  describing  the  filtering  process  and  the

architecture of the IC classifier.  We then present the various datasets used in this study, both for

training the classifier and testing the IC detection algorithm. We give insights on the labeling process

and on the composition of the datasets. We then describe the training processes leading to the master

classifier  and the calibration step used to obtain the target  classifier.  The performance evaluation

methodology is then described, allowing us to measure the system’s efficiency both at patch level

(i.e., how accurately IC is localized) and at slide level (i.e., whether a slide containing IC is predicted

as such and vice-versa). Finally, the results obtained and future studies are discussed.
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METHODS

Whole slide image pipeline processing

To locate IC on WSI we adopted a patch-based approach.8,17,21 An input WSI was parsed into small

images  called  patches  which  were  filtered  and later  fed  to  a  CNN-based  classifier  to  determine

whether they contained IC or not. From there a slide level score was determined to assess whether the

slide contained IC or not. The full processing pipeline is illustrated in Figure 1.

In the parsing step, we chose to focus only on nuclear epithelial areas since these are the regions

where IC diagnosis is performed. To do so, epithelial regions were first segmented automatically and

were then parsed into patches at zoom level x20 and with size 256 x 256 pixels; non relevant patches:

blur,  no tissue, or those that did not contain nuclei were finally discarded. Doing so dramatically

reduced the number of patches going through further processes; depending on the size of the epithelial

regions filtering can discard up to 99% of the tissue (cf. Figure 1c). The filtering process is further

described in Annex 1. 

For each retained patch, a subsidiary patch with the same size and from the same center, but extracted

at zoom level x5, was retrieved and fed into a two-class CNN-based classifier. A major difference

with trad patch-based approaches,17,21 was that we fed the network with x5 zoom patches to determine

IC scores, these scores being attributed to the associated x20 zoom patches. The IC scores represent

the probability that the patch contains IC (see section Evaluation method for more details). In other

words, the contextual information contained in the x5 zoom patch determined the label of its central

region (see Figure 1d, 1e). Keeping the x20 patch (and not the x5 one) as a base unit for the analysis

allowed us to have a better resolution for cancer localization.  

Network architecture

The model architecture consisted of a Resnet5022 feature extractor, the final fully connected layers

being replaced by a random forest classifier. This hybrid architecture was found to improve results

compared  to  using  a  simple  ResNet50  architecture.  The  classifier  assigned  each  patch  with  a

probability of belonging to the IC class. 

 

Material and dataset

In this section the main libraries incorporated in our algorithm are mentioned and the datasets used for

both the training and test are described.

Material

The filtering step was performed on CPU units: Intel(R) Core(TM) i9 3.6 GHz.

Model training and IC inference were performed on GPU: NVIDIA GeForce RTX 2080 Ti, 11 Gb,

frequency boost 11 GHz.
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The training of the CNN was managed with tensorflow 2.5 and the training of the random forest

classifier was managed with scikit-learn. To process WSI, we used the Openslide library. 

Datasets

The datasets used in this study were built from WSI originating from two different medical centers

referred to respectively as “reference center” and “target center”.  As described in this section, slides

were first labeled, then patches were extracted and filtered to generate training and test datasets. The

training  datasets  were  used  to  train  the  networks  and  the  test  datasets  were  used  to  assess  the

network’s performance. The complete extraction and training pipe is illustrated in Figure 2.

Both datasets were annotated according to the same process: using in-house software, 25 experienced

pathologists were asked to draw regions of interest (ROI) on the WSI. Each ROI was checked and

validated by an expert pathologist, in case of disagreement  the WSI is sent back for revision until a

consensus is found. ROI were drawn for regions presenting pathological patterns and for some healthy

tissue  as  well.  Each  ROI  was  associated  with  a  label  corresponding  to  its  diagnosis.  Labels

corresponding to invasive ductal carcinoma, invasive lobular carcinoma or mucinous carcinoma were

grouped into the IC class and every other label corresponding to benign pathologies or healthy tissue

was grouped into a Rest class.

Annotated slides were then processed and parsed into patches, each patch being assigned the label

corresponding to  the  ROI  it  belonged to.  Annotated  ROIs  may contain  non-tissue  pieces,  blurry

regions or stroma; to obtain quality data, those patches were filtered out according to the same criteria

as  those  applied  during  the  filtering  step  in  the  processing  pipeline  (see  section  “Whole  slide

processing pipeline”). The datasets are described in Table 2. For each center, several slides from the

same patient were usually available. In order to split each dataset into a training and a test set, patient

folders  were  divided  so  that  ~80%  of  the  slides  lay  in  the  training  set.  A  given  patient  folder

exclusively  belonged to  the  test  or  the  training  set.  This  ensured  that  no  data  leakage  occurred

between the training and test sets. 

As shown in Table 2, the reference dataset contained much more data than the target dataset; the

former was used for training the master classifier whereas the target dataset was used for calibration.

Training of the classification model

In order to obtain an accurate classification model, relevant image features must be extracted from the

images. This was achieved using a CNN that automatically learned optimal information for the task at

hand, in this work the CNN used was a ResNet50. This network was a critical component of the

proposed processing pipeline and was trained using a large amount of quality annotated data.  

In  [20],  the  authors  show that  data  augmentation  significantly  improves  models  performance  on

histological data. Building on this knowledge, a similar set of data augmentation functions were used

during the CNN training to reduce overfitting and improve results on unseen data, namely flips and
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rotations,  additive  Gaussian  noise,  hue,  saturation,  contrast,  and  brightness  transformations.  The

various parameters controlling augmentation functions were set using a grid search scheme.

To train the ResNet50, binary cross entropy was optimized with an Adam optimizer 23 with an initial

learning rate of 0.001. ResNet50 weights were initialized with weights resulting from pre-training on

ImageNet and no layer was frozen. An early stopping condition was set. The features learnt from this

feature extractor were used as inputs to train a random forest classifier.  More specifically, the random

forest  was  fed  with  feature  maps  output  by  the  ResNet50  backbone  from which  the  final  fully

connected layer was removed.

The network resulting from the training phase was the master model and could then be calibrated with

data from another center in order to perform well on the latter.

Calibration step to address a new center

From one medical center or laboratory to another, slide preparation methods, staining processes, and

slide scanner types can differ considerably. Because of these variations, the general aspect of the

scanned slides  is  notably different  (see  Figure  3).  Consequently,  although the master  model  was

shown to be robust  to analyze data from the same center as the training dataset,  its  performance

deteriorated when moving to a new acquisition center (see Results section). In order to address this

problem, we set up a calibration step which made it possible to specifically adapt the master model to

a new target center. The calibration step was based on transfer learning: weights from the master

model were taken as the starting state for new training with labeled data from the target center. An

almost 10-fold decrease in data required during the calibration step was observed when compared to

the training on the reference center (see Table 3). The calibration training was performed with the

same hyperparameters and training strategy as the master CNN training.

The target model resulting from this calibration step was especially trained to perform well on data

from the target center.  This model could be directly plugged into the pipeline of WSI processing

described above, as illustrated in Figure 4.

Evaluation method

The performance of the master and calibrated models was measured on both reference and target

centers. As described in “Material and dataset”, patch test sets (i.e., reference test set and target test

set) were built from slides from both centers to assess the generalizability of our algorithm. 

The performance of each model  was evaluated both at  the patch and slide level.  For patch level

classification, a simple threshold of the IC score determined whether a given patch was classified as

IC or Rest. This threshold was determined as the best precision/recall tradeoff by maximizing the F1-

score on validation data. For slide level classification, we defined the slide score S IC as the sum of the

scores of patches classified as IC within this slide normalized by the total number of patches detected

on the WSI. 
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S IC=𝚺P>P0
P /N ,

where P is the patch classification score, P0 is the threshold from which a patch is positive to IC and

N  is the total number of epithelial patches. If this score was above a fixed threshold (also determined

using F1-score  maximization)  then the  slide  was  considered to  contain  IC.  The number  of  false

negatives (FN), false positives (FP), true positives (TP), and true negatives (TN) were then computed

both at the patch and slide level, and standard accuracy, precision, and recall metrics were measured.

Accuracy was defined as (TP+TN)/(TP+FP+FN+TN) and represented the percentage of patches (resp.

slides) correctly predicted; precision was defined as TP/(TP+FP) and represented the percentage of

cancer-predicted patches (resp. slides) that were truly cancerous; recall was defined as TP/(TP+FN)

and represented the percentage of patches (resp.  slides)  presenting IC regions that  were correctly

predicted as cancer.

RESULTS

The results are summarized in Table 4.

Accuracy of the model

At the patch level, the model had an accuracy of 92.1% and 96.3% on the reference and target test

sets, respectively. At the slide level, accuracy was 97.6% for the reference test set and 92.0% for the

target test set.

 

Model recall

At the patch level, the model had a recall of 95% and 87.8% on the reference and target test sets,

respectively. At the slide level, recall was 90.9% for the reference test set and 100% for the target test

set (Table 4).

 

Precision of the model

At the patch level, precision was 73.9% and 70.6% for the reference and target test sets, respectively.

At the slide level, precision was 100% for test set 1 and 70.8% for test set 2 (Table 4).

Computation times

The average computation time of the complete pipeline for slides from our test set was 114.9 s with

standard variation of 95 s. This could be broken down as follows: 108.3 s on average for the filtering

process and 16.6 s on average for the IC inference step.
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DISCUSSION

The algorithm developed and described in this paper aimed at detecting IC on WSI. It proved to be

accurate and precise when tested at patch and slide level on the test datasets. However, to the best of

our knowledge,  there is  no common standard either for metrics used or for datasets,  and authors

usually test their algorithms on their own data using different metrics. Some datasets do not even

allow slide level evaluation and metrics are only computed at patch level. These reasons make any

comparison complicated. For instance, Narayanan and colleagues17 used a simple patch-based 5-layer

CNN with color constancy pre-processing and achieved an AUC of 0.935 on a breast histology image

dataset  from  Kaggle.24 In  another  study,  Cruz-Roa  and  colleagues  introduced  a  3-layer  convnet

classifier with a single convolutional layer.25 A slide level DICE coefficient was computed to evaluate

the model.  These authors reported a DICE of 0.7494 ± 0.2071, positive predictive value (PPV) of

0.6464 ± 0.2870, and negative predictive value (NPV) of 0.9709 ± 0.0350 on a dataset consisting of

TCGA breast images.26 Celik and coworkers8 were able to achieve 91.96% accuracy on the BreakHis

dataset27 at patch level using a pretrained ResNet-50 with no data-augmentation. Using a FusionNet

encoder + softmax classifier, Brancati’s group28 reported 87.76% accuracy on Janowczyk’s dataset.29

Finally, Zeng and Zhang7 used Google Cloud AutoML Vision on breast histopathology images from

Mooney’s dataset24 and claimed 85.26% balanced accuracy at the patch level. 

As described above, our technique led to a patch level accuracy of  > 90% (see section Results) and a

slide  level  accuracy  of  >  92%.  This  is  a  state-of-the-art  performance  although,  for  previously

mentioned reasons, a fair and closer comparison with other techniques is difficult.

A key point  of  the  proposed  algorithm pipeline  is  that  it  focuses  the  analysis  solely on nuclear

epithelial  regions,  leading  to  faster  treatment,  compatible  with  routine  clinical  use.  Contrary  to

previous reports,  where  regions on which the analysis  will  be  performed are determined through

machine learning techniques, we propose simple, fast, and efficient filtering criteria based on standard

image processing methods. No additional training is therefore needed. To the best of our knowledge,

this is an original approach.

Another focus of our work was the ability of our model to generalize to different acquisition centers

with various scanners and preparation processes that cause changes in slide appearance. The use of a

two phase-training process provided a similar performance on the target test dataset compared to the

reference test set while using much less training data. The target dataset was more than 10-times

smaller than the reference dataset. It should also be noted that the diversity of pathologies found in the

target dataset was smaller than that observed in the target dataset. Therefore, the reference dataset

contained a lot of information that was not contained in the target dataset. It is important not to forget

the information learnt during the first stage of training when transferring the knowledge to the target.

As can be observed from the decreased performance on the reference center when using the calibrated

CNN instead of the master CNN, it can be seen that some information is lost during the calibration

phase (see Table 3). This problem will be addressed in a future study.  Zaneta Swiderska-Chadaj et
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al.19  proposed a technique using Cycle-GAN style normalization for a multicenter algorithm with

good performance. They achieved similar accuracy on their development dataset and test datasets

built using data originating from different centers. However, they used a training set containing data

from several centers to train their classification model. With our proposed method, the network needs

only one reference center dataset and calibration can then be performed using a small amount of data

from a given target center. Furthermore, in order to reduce the computation time and the expectancy

on hardware capabilities at  inference, the number of models used and their size is minimal. It  is

therefore more adapted to use a single calibrated CNN instead of a Cycle-GAN normalization step

followed by a CNN classification step.

CONCLUSION

Our IC detection pipe is efficient and could be applied to WSI from different medical centers using a

limited amount of additional data. This tool may help pathologists to make a more accurate and faster

diagnosis and postoperative treatment planning. Such a support can be used for quickly screening

slides in high-throughput laboratories, selecting slides needed for fast immunohistochemistry, making

practice more consistent, or assisting in reporting.  Future studies include a parametric study on the

size of the target dataset, for various medical centers, to determine the minimum volume of  data

necessary to maintain performance when moving from the reference to a target center, improvement

of the processing time, generalization to pathologies other than IC, and organs other than the breast.

We will  also  investigate  multi-domain  adaptation  as  a  means  of  obtaining  proper  generalization

results with an even more limited amount of data when addressing a specific target center. 
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Annex  1.  Filtering  process

As described in section Methods, a filtering process is applied to the WSI with a two-fold objective:

reduce the analysis to epithelial regions and discard patches that have no interest for further analysis

(artifacts, no tissue, no nuclei). This allows dramatically reducing the amount of patches fed to the

invasive cancer classifier. 

The filtering process is made of the following steps:

● epithelial regions segmentation

● discard patches that have no interest for further analysis  

○ patches do not contain nuclei

○ blurry patches

○ patches with little tissue inside

The epithelial segmentation process is described in Figure 5, the tissue is first segmented at zoom x1

through a simple two class otsu30 thresholding. The resulting mask is then parsed into 256*256px

tissue patches at zoom x2.5. Epithelial regions appear as dark heterogeneous regions (see Figure 5).

Tissue patches undergo a gaussian smoothing so as to make epithelial regions more uniform and a

final two class otsu thresholding is applied to discriminate epithelium from stroma.

Epithelial tissue is then parsed at zoom x20 into 256*256px patches which go through a final discard

process, each filter is described in Table 5.
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Table 1: Scanners and staining methods

Reference center Target center

Scanner Hamamatsu (S120) 3DHistech (P1000)

resolution (μm/pixel) 0.44 0.24

Staining method HES HES
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Table 2: Data set constituents

Reference dataset Target dataset

Training set Test set Training set Test set

Class No. of
patient
folders

No. of
slides

No. of
patches

No. of
patient
folders

No.
of

slides

No. of
patches

No. of
patient
folders

No. of
slides

No. of
patches

No. of
patient
folders

No. of
slides

No. of
patches

IC 50 175 435913 7 17 49089 7 27 56586 4 22 15196

Rest 98 777 855366 18 71 137591  11 45 19481 10 61 182731

Total 148 952 1291279 25 88 186680 18 72 76067 14 83 197927

This table summarizes,  for  each class,  the number of patient  folders,  slides,  and patches that  are
contained in both datasets (training and test subsets). Note that a slide is referred to as an “IC slide” if
it contains at least one region of interest with a label being one of the following: invasive ductal
carcinoma, invasive lobular carcinoma or mucinous carcinoma. Dataset 1 (resp. 2) contains 135 (resp.
48) slides with ductal IC, 52 (resp. 0) slides with lobular IC, and five (resp. 1) slides with mucinous
carcinoma. Note that slides come from both biopsies and mastectomies, in comparable proportions.
The proportion of cases between various labels was not chosen, it is representative of the routine
practice of the medical centers that provided the data.
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Table 3: Comparison of master model and calibrated model performance

Master model Calibrated model

Reference
center test set 

Accuracy: 0.92

Precision: 0.94

Recall: 0.74

Accuracy: 0.75

Precision: 0.44

Recall: 0.66

Target center 
test set

Accuracy: 0.51

Precision: 0.95

Recall: 0.07

Accuracy: 0.96

Precision: 0.87

Recall: 0.70

This table illustrates the results of both the master IC classifier model and the target IC classifier
model, on both the reference and target test sets. The master model performs well on the reference test
set but its performance is greatly decreased when translating to the target center. Differences in slides
preparation and acquisition scanners make it challenging to generalize to a new center. The calibrated
model is obtained through a transfer learning approach by taking the master model as the starting state
when learning on a training dataset  from the target  center.  The performance of  the  target  model
obtained on the target test set is highly improved and is comparable to that obtained by the master
model when tested on the reference test. Note that the target model has its metrics decreased on the
reference test set.

Table 4. Results of the model on test sets 1 and 2
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  Reference dataset

Test set

Target dataset

Test set

Patch level 

metrics

Accuracy 0.92 0.96

Recall 0.94 0.87

Precision 0.74 0.70

Slide level 

metrics

Accuracy 0.98 0.92

Recall 0.91 1.0

Precision 1.0 0.71

The  table  details  the  classification  metrics  at  patch  and slide  levels  for  the  reference  and target

datasets. This illustrates the calibrated system’s performance.
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Table 5: filtering functions

filter algorithm details

discard patches that do not 
contain nuclei

MobileNetV2 classifier31 The network was trained to 
distinguish patches that contain
nuclei from patches that do not 
contain nuclei

blur a laplacian filter is applied to 
the image. If the variance of the
resulting mask is under a given 
threshold, then the image is 
filtered out

Patches that are too blurry are 
filtered out

not enough tissue - gets the most frequent pixel 
value val in the image 
converted to greyscale
- checks the proportion prop of
pixels with intensity i such as |
val - i| < thres_1
- discards the patch if prop > 
thres_2

Patches that do not contain 
enough tissue are filtered out

The table summarizes the various filters applied in the filtration process. Patches that do not contain
nuclei, that are blurry or that contain too little tissue inside are filtered out.
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Figure 1. Whole slide image (WSI) processing pipeline for invasive carcinoma (IC) detection.

This figure illustrates the processing pipeline for invasive carcinoma (IC) detection on breast WSI (a).
A zoomed-in view of the tissue is shown in (b). Epithelial nuclear regions are first detected and parsed
(c) into square patches at zoom x20 (e). For each x20 patch, an auxiliary patch with the same center
and size is extracted at zoom x5 (d) and fed to a CNN based classifier to predict an IC score. This
score  is  attributed  to  the  x20  patch.  The  set  of  IC  scores  for  x20  patches  belonging  to  nuclear
epithelial regions enables the location of cancer on a slide (f). Note that a patch is considered to fall
into the IC class when its score is above a threshold determined through the ROC method. NB: the
color code in (f) ranges from blue (very low IC score - low probability of IC) to red (very high IC
score - high probability of IC). A slide IC score is then computed by taking the weighted average of
the IC patches score.
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Figure 2. Two-stage dataset generation and training process.

This figure illustrates our two stage dataset generation training process. Whole slide images (WSI)
from the reference center are parsed and broken down into patches. These are filtered so as to keep
only those belonging to nuclear epithelial regions. The patches obtained are split between the training
and test sets (at a ratio of 0.8, resp 0.2). Note that a given patient’s slides are either fully included in
the test or training set so as to avoid data leakage. The reference training set is used to train the master
IC classifier. The performance of the master classifier is evaluated on the reference test set.
Regarding the calibration process, the master model is used as an initial state for transfer learning
training on the target center training set. The resulting calibrated model is evaluated on the target test
set.
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Figure 3. Variations in slide appearance.

This figure shows two slides from the reference and target centers.  Due to variations in the slide
preparation process and acquisition scanners from one center to another, the slide aspect (i.e tissue
staining and texture) can differ.  This results in problems of generalization when a model that has
learnt on a given center is used for inference on WSI from another center.
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Figure 4. Development of the deep learning model using two-phase training.

This figure illustrates how the IC classifier models are plugged into the WSI processing pipeline. Any
classifier can be plugged into the pipeline. When implemented in a target center, the plugged model is
calibrated on the target center training set, using the master CNN model as a starting state for training.

23



Figure 5. Epithelial regions segmentation

This figure illustrates the WSI epithelium segmentation process. The tissue is first segmented at zoom
1 through a simple two class otsu thresholding. The resulting mask is then parsed into 256*256px
tissue patches at zoom 2.5. Epithelial regions appear as dark heterogeneous regions. Tissue patches
undergo a gaussian smoothing so as to homogeneous epithelial regions and a final two class otsu
thresholding is applied to discriminate epithelium from stroma.
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